This book covers the principle, structure, enhancement of sensitivity and resolution power of photothermal and Raman microscopies. It includes real-world applications to biological and medical targets.
Advanced Microscopy: Photo-Thermal and Induced-Raman Microscopy introduces clear descriptions of various Raman processes such as spontaneous, stimulates, coherent anti-Stokes Raman (CARS), Raman loss and Stokes Raman (gain). It covers pump-probe microscopies using actinic (pump) laser and sensing (probe) laser resulting in improvement due to intrinsic nonlinearity, which provides an advantage in the imaging of nonfluorescent targets. The author also provides solutions to noise and sensitivity problems which are two of the most important concerns in the microscopy applications. Finally, the book also draws direct comparisons of the advantages and drawbacks of a Raman microscopes in comparison with photothermal microscopes.
The book will be useful to researchers and non-specialists in biomedical fields using optics and electronics relevant to (optical) microscopes. It will also be a helpful resource to graduate students in the fields of biology and medical research who are using photothermal microscopes in their research.
Takayoshi Kobayashi was born in Niigata Prefecture in 1944. He is a professor emeritus at the University of Tokyo, from which he previously graduated with Bachelor's, Master's, and Doctorate degrees. He joined the Institute of Physical and Chemical Research (Riken), and between 1977 and 1979, he was a temporary member of the Technical Staff at Bell Laboratories. In 1980 he joined the Department of Physics at the University of Tokyo as an associate professor and was promoted to full professor in 1994. In March 2006 he retired from the university and moved to the Department of Applied Physics and Chemistry at the University of Electro-Communications, in Tokyo. He was appointed Chair Professor and the Director of the National Chiao-tung University in 2006, which became the National Yang-Ming Chiao-Tung University in 2021. His research interests include quantum electronics, laser physics, femtosecond spectroscopy, ultrafast nonlinear optics, quantum optics, chemical physics, quantum information science and technology.