New to This Edition
*Utilizes the R interface to Stan--faster and more stable than previously available Bayesian software--for most of the applications discussed.
*Coverage of Hamiltonian MC; Cromwell's rule; Jeffreys' prior; the LKJ prior for correlation matrices; model evaluation and model comparison, with a critique of the Bayesian information criterion; variational Bayes as an alternative to Markov chain Monte Carlo (MCMC) sampling; and other new topics.
*Chapters on Bayesian variable selection and sparsity, model uncertainty and model averaging, and Bayesian workflow for statistical modeling.
"Kaplan's book is the perfect follow-up for those whose curiosity has been piqued about Bayesian statistics. The many code examples will give users a head start for applying Bayes' theorem to their data. I highly appreciate that the author uses open-source software for all models. The topics are introduced with a rich amount of background information, some equations (but never too many), detailed explanations, and code examples. Empirical results are used to illustrate each topic."--Rens van de Schoot, PhD, Department of Methodology and Statistics, Utrecht University, Netherlands
"An excellent resource for researchers at the graduate level or above with an interest in Bayesian statistics. Readers are skillfully guided through the process of statistical reasoning from a Bayesian perspective. This book is practical and minimally technical while also introducing readers to interesting historical and philosophical issues. What makes the book especially helpful is Kaplan's careful balance of breadth and depth of coverage of key topics. In this timely second edition, important recent advances in Bayesian statistics are distilled and disseminated for researchers in the social sciences."--Sierra A. Bainter, PhD, Department of Psychology, University of Miami
"This book has all the essential components to help readers, especially quantitative researchers in social sciences, understand and conduct Bayesian modeling. The second edition includes new material on recent Markov chain Monte Carlo (MCMC) methods, such as Hamiltonian MC, in addition to a range of other updates."--Insu Paek, PhD, Senior Scientist, Human Resources Research Organization
"I recommend this book for providing a careful overview of the Bayesian framework, at a level accessible to a wide audience, with examples, code, and key references. Kaplan does a great job of covering so many different aspects of Bayesian modeling in a coherent way and presenting a number of substantive methods for analyzing complex data. I liked the comparisons and analogies to the frequentist approach."--Irini Moustaki, PhD, Department of Statistics, London School of Economics and Political Science, United Kingdom