The co-op bookstore for avid readers
Book Cover for: Building LLM Powered Applications: Create intelligent apps and agents with large language models, Valentina Alto

Building LLM Powered Applications: Create intelligent apps and agents with large language models

Valentina Alto

Get hands-on with GPT 3.5, GPT 4, LangChain, Llama 2, Falcon LLM and more, to build LLM-powered sophisticated AI applications

Key Features
    Embed LLMs into real-world applicationsUse LangChain to orchestrate LLMs and their components within applicationsGrasp basic and advanced techniques of prompt engineering
Book Description

Building LLM Powered Applications delves into the fundamental concepts, cutting-edge technologies, and practical applications that LLMs offer. Ultimately paving the way for the emergence of Large Foundation Models (LFMs) that extend the boundaries of AI capabilities.

The book begins with an in-depth introduction to LLMs. We then explore various mainstream architectural frameworks, including both proprietary models (GPT 3.5/4) and open-source models (Falcon LLM), and analyze their unique strengths and differences. Moving ahead, with a focus on the Python-based, lightweight framework called LangChain. We guide readers through the process of creating intelligent agents capable of retrieving information from unstructured data and engaging with structured data using LLMs and powerful toolkits. Furthermore, the book ventures into the realm of LFMs, which transcend language modeling to encompass various AI tasks and modalities, such as vision and audio.

Whether you are a seasoned AI expert or a newcomer to the field, this book is your roadmap to unlock the full potential of LLMs and forge a new era of intelligent machines.

What you will learn
    Core components of LLMs' architecture, including encoder-decoders blocks, embedding and so onGet well-versed with unique features of LLMs like GPT-3.5/4, Llama 2, and Falcon LLMUse AI orchestrators like LangChain, and Streamlit as frontendGet familiar with LLMs components such as memory, prompts and toolsLearn non-parametric knowledge, embeddings and vector databasesUnderstand the implications of LFMs for AI research, and industry applicationsCustomize your LLMs with fine tuningLearn the ethical implications of LLM-powered applications
Who this book is for

Software engineers and data scientists who want hands-on guidance for applying LLMs to build applications. The book will also appeal to technical leaders, students, and researchers interested in applied LLM topics.

We don't assume previous experience with LLM specifically. But readers should have core ML/software engineering fundamentals to understand and apply the content.

Book Details

  • Publisher: Packt Publishing
  • Publish Date: May 22nd, 2024
  • Pages: 342
  • Language: English
  • Edition: undefined - undefined
  • Dimensions: 9.25in - 7.50in - 0.71in - 1.30lb
  • EAN: 9781835462317
  • Categories: Business & Productivity Software - Word ProcessingData Science - Neural NetworksArtificial Intelligence - Natural Language Processing

About the Author

Alto, Valentina: - After completing her bachelor's degree in finance, Valentina Alto pursued a master's degree in data science in 2021. She began her professional career at Microsoft as an Azure Solution Specialist, and since 2022, she has been primarily focused on working with Data & AI solutions in the Manufacturing and Pharmaceutical industries. Valentina collaborates closely with system integrators on customer projects, with a particular emphasis on deploying cloud architectures that incorporate modern data platforms, data mesh frameworks, and applications of Machine Learning and Artificial Intelligence. Alongside her academic journey, she has been actively writing technical articles on Statistics, Machine Learning, Deep Learning, and AI for various publications, driven by her passion for AI and Python programming.