The co-op bookstore for avid readers
Book Cover for: Hands-On Graph Neural Networks Using Python: Practical techniques and architectures for building powerful graph and deep learning apps with PyTorch, Maxime Labonne

Hands-On Graph Neural Networks Using Python: Practical techniques and architectures for building powerful graph and deep learning apps with PyTorch

Maxime Labonne

Design robust graph neural networks with PyTorch Geometric by combining graph theory and neural networks with the latest developments and apps

Purchase of the print or Kindle book includes a free PDF eBook


Key Features:

  • Implement state-of-the-art graph neural network architectures in Python
  • Create your own graph datasets from tabular data
  • Build powerful traffic forecasting, recommender systems, and anomaly detection applications



Book Description:

Graph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as social networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural language processing and computer vision to recommendation systems and drug discovery.

Hands-On Graph Neural Networks Using Python begins with the fundamentals of graph theory and shows you how to create graph datasets from tabular data. As you advance, you'll explore major graph neural network architectures and learn essential concepts such as graph convolution, self-attention, link prediction, and heterogeneous graphs. Finally, the book proposes applications to solve real-life problems, enabling you to build a professional portfolio. The code is readily available online and can be easily adapted to other datasets and apps.

By the end of this book, you'll have learned to create graph datasets, implement graph neural networks using Python and PyTorch Geometric, and apply them to solve real-world problems, along with building and training graph neural network models for node and graph classification, link prediction, and much more.


What You Will Learn:

  • Understand the fundamental concepts of graph neural networks
  • Implement graph neural networks using Python and PyTorch Geometric
  • Classify nodes, graphs, and edges using millions of samples
  • Predict and generate realistic graph topologies
  • Combine heterogeneous sources to improve performance
  • Forecast future events using topological information
  • Apply graph neural networks to solve real-world problems


Who this book is for:

This book is for machine learning practitioners and data scientists interested in learning about graph neural networks and their applications, as well as students looking for a comprehensive reference on this rapidly growing field. Whether you're new to graph neural networks or looking to take your knowledge to the next level, this book has something for you. Basic knowledge of machine learning and Python programming will help you get the most out of this book.

Book Details

  • Publisher: Packt Publishing
  • Publish Date: Apr 14th, 2023
  • Pages: 354
  • Language: English
  • Edition: undefined - undefined
  • Dimensions: 9.25in - 7.50in - 0.74in - 1.34lb
  • EAN: 9781804617526
  • Categories: Machine TheoryData Science - Neural NetworksArtificial Intelligence - General

More books to explore

Book Cover for: How Data Happened: A History from the Age of Reason to the Age of Algorithms, Chris Wiggins
Book Cover for: Journey of the Mind: How Thinking Emerged from Chaos, Ogi Ogas
Book Cover for: You Look Like a Thing and I Love You: How Artificial Intelligence Works and Why It's Making the World a Weirder Place, Janelle Shane
Book Cover for: The Digital Mindset: What It Really Takes to Thrive in the Age of Data, Algorithms, and AI, Paul Leonardi
Book Cover for: Ethical Machines: Your Concise Guide to Totally Unbiased, Transparent, and Respectful AI, Reid Blackman
Book Cover for: Godel, Escher, Bach: An Eternal Golden Braid, Douglas R. Hofstadter
Book Cover for: The Book of Why: The New Science of Cause and Effect, Judea Pearl
Book Cover for: The Loop: How AI Is Creating a World Without Choices and How to Fight Back, Jacob Ward
Book Cover for: The Handover: How We Gave Control of Our Lives to Corporations, States and Ais, David Runciman
Book Cover for: Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers, John Maccormick
Book Cover for: Meganets: How Digital Forces Beyond Our Control Commandeer Our Daily Lives and Inner Realities, David B. Auerbach

About the Author

Labonne, Maxime: - Maxime Labonne is currently a senior applied researcher at Airbus. He received a M.Sc. degree in computer science from INSA CVL, and a Ph.D. in machine learning and cyber security from the Polytechnic Institute of Paris. During his career, he worked on computer networks and the problem of representation learning, which led him to explore graph neural networks. He applied this knowledge to various industrial projects, including intrusion detection, satellite communications, quantum networks, and AI-powered aircrafts. He is now an active graph neural network evangelist through Twitter and his personal blog.

More books by Maxime Labonne

Book Cover for: LLM Engineer's Handbook: Master the art of engineering large language models from concept to production, Paul Iusztin