Scanning Transmission Electron Microscopy is focused on discussing the latest approaches in the recording of high-fidelity quantitative annular dark-field (ADF) data. It showcases the application of machine learning in electron microscopy and the latest advancements in image processing and data interpretation for materials notoriously difficult to analyze using scanning transmission electron microscopy (STEM). It also highlights strategies to record and interpret large electron diffraction datasets for the analysis of nanostructures.
This book:
This book helps academics, researchers, and industry professionals in materials science, chemistry, physics, and related fields to understand and apply computer-science-derived analysis methods to solve problems regarding data analysis and interpretation of materials properties.
Dr. Alina Bruma received her PhD degree in Nanoscale Physics from The University of Birmingham, UK in 2013. Dr. Bruma completed several postdoctoral stages at the Laboratory of Crystallography and Materials Science (CRISMAT-CNRS) France, University of Texas at San Antonio, USA and The National Institute of Standards and Technology, USA before moving to the American Institute of Physics Publishing in 2019. Her research has been focused on the study of crystalline structure of materials and the determination of their structure-property relationship using transmission electron microscopy and electron diffraction. Dr Bruma is also the Chairman of The Electron Diffraction sub-committee at the International Center for Diffraction Data (ICDD).